If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+10t+3=0
a = 5; b = 10; c = +3;
Δ = b2-4ac
Δ = 102-4·5·3
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{10}}{2*5}=\frac{-10-2\sqrt{10}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{10}}{2*5}=\frac{-10+2\sqrt{10}}{10} $
| -0.6+3.62=-0.8x+4.62 | | -(2x-4)+10=-28 | | 2(x+4)=-16x | | 4x+11=9x+26 | | 4y2+10=42 | | -4n=-5 | | 4(x+6)-3x=26 | | 4x-18÷2=x-5 | | 5/9(n+3)=40 | | -x+8=-26 | | 10/5=5x/20 | | -5=7+3h | | 5/6m+7=37 | | 16x-17=x+59 | | 7y-19=-3(y-7) | | 5+2l=7 | | 1/5y-4=-16 | | 6(2x-5)+3=57x | | 2r=8-2 | | 9(u+20)=63 | | 161=-y+109 | | 3(x-2)+4(2-6)=6(x-4)+8(2x+1) | | p+6-10p=15 | | 3(x-1)=2x+x+-3x | | 5/6x-36+7=37 | | 5x-80=2x-5 | | 6x3+x2-1=0 | | 5y+17=36 | | -v+262=11 | | 3(x-1)=2x+x+-3 | | x/2+4x=27 | | 5/6x36+7=37 |